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Abstract

Recognizing images of handwritten chemical struc-
ture is meaningful for educational and research
purposes. A recognition system which make use
of depthwise convolution, large kernel, instance
normalization, counting loss, relaxed classification
loss, model ensembling, customized representation
of chemical structure, and formal grammar is pro-
posed. Although the total number of parameters
is only about 4 x 1.3M, the proposed solution
has achieved a highly competitive accuracy in IC-
DAR 2024 Competition on Recognition of Chemi-
cal Structures.

Keywords Chemical structure recognition; hand-
writing recognition; optical character recogni-
tion

1 Introduction

Chemical structure is a kind of basic element in en-
gineering and scientific documents, digitizing them
would maximize the usability of these valuable in-
formation. Unfortunately, converting them to a
machine-readable form can be cumbersome, graph-
ical editors are inefficient, whereas markups like
chemfig! and SMILES? are not easy to learn. An
accurate recognition systems for chemical struc-
tures may enable a natural and efficient input
method, many potential applications can also base
upon that. For example, automatic marking of an-
swers and retrieval of chemical information.
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Recognition of chemical structures is a challeng-
ing task, which is even more difficult than recog-
nition of mathematical expressions. Mathematical
expressions are trees, whereas chemical structures
are generic graphs. The diverse ways to draw the
same molecule also pose difficulties. There are a
number of competitions on handwritten mathemat-
ical expression recognition, including CROHME
2011, 2012, 2013, 2014, 2016, 2019 and 2023 [1],
OffRaSHME 2020 [2], and MLHME 2023 [3]. How-
ever, up to our knowledge, ICDAR 2024 Compe-
tition on Recognition of Chemical Structures® (IC-
DAR 2024 CROCS) is the first competition devoted
to handwritten chemical structure recognition.

In this technical report, a lightweight solution
to the challenge is proposed. Standard encoder-
decoder models are used to translate a bitmap im-
age to a sequence of tokens in a language sightly dif-
ferent from SSML-norm [4], where type and angle
(rounded to a multiple of 15) of a bond are repre-
sented with two tokens, whereas length is ignored.
During preprocessing, all input images are first con-
verted to grayscale, then rescaled and padded to
the resolution of 1024x256. The model architec-
ture is similar to the baseline DenseWAP [5], but
we have modified the backbone. All convolution
layers are replaced with pointwise and depthwise
convolutions [6] to reduce the time complexity and
the number of parameters. A larger kernel size (5x5
instead of 3x3) is used to enlarge the reception field.
All batch normalization layers are replaced with
instance normalization [7] layers to improve gen-
eralization ability and ensure that computation is
the same across training and inference. A counting
loss [8] is utilized during training in addition to a
relaxed classification loss. Model ensembling and
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LL(1) grammar parsing [9] are also employed dur-
ing beam search to boost accuracy and avoid illegal
output.

2 Related works

In the past, rule-based systems [10] are used for
chemical structure recognition. They can recognize
clear images of printed chemical structure reason-
ably well, but often fail badly on degraded images
or handwritten chemical structures.

Recently, neural networks become popular. End-
to-end approaches used string decoder [11] or graph
decoder [12] to predict the representation of chem-
ical structure directly. Detection based approaches
use object detection to locate atoms and bonds,
then graph neural network [13] or rules [14] are
applied to reconstruct the structure. In theory,
these methods can be applied to handwritten chem-
ical structures, but they require a large amount of
training data and labeling handwritten images is
expensive. Therefore, a publicly available dataset
is needed.

3 Methodology

Standard encoder-decoder models are used to
translate a bitmap image to a sequence of tokens
in a language sightly different from SSML-norm.

3.1 Data processing

3.1.1 Modified SSML-norm

Type and angle (rounded to a multiple of 15 as
in [4]) of a bond are represented with two tokens,
whereas length is ignored. Decoupling type and
angle of a bond can reduce class imbalance. In fact,
some combinations of type and angle are absent or
extremely rare in the training data, they can still
be predicted thanks to this language.

3.1.2 Image preprocessing

During preprocessing, all input images are first con-
verted to grayscale, then rescaled and padded to the
resolution of 1024x256, where the median color is
used for padding so that no mask is needed.

3.1.3 Data augmentation

Some image transformations are applied on-the-fly
during training to improve the robustness of the
models. Here are some of them:

o Affine transforms
e Blur and sharpen
e Adjusting brightness and contrast

« Addition of noise

3.2 Model architecture

The model architecture is similar to the baseline
DenseWAP [5], but we implement it ourselves with
TensorFlow* and Keras® for training, and ONNX
Runtime® for inference. Compared with the base-
line, the backbone is another variant of DenseNet
[15]. The major modifications are listed in the fol-
lowing.

3.2.1 Depthwise convolution

All convolution layers except the first one are re-
placed with pointwise and depthwise convolutions
as in MobileNetv2 [6] to reduce the time complexity
and the number of parameters. The use of depth-
wise convolutions also make them insensitive to the
kernel size.

3.2.2 Larger kernel size

A larger kernel size (5x5 instead of 3x3) is used to
enlarge the reception field, which is a common prac-
tice adopted by many modern convolutional net-
works [16].

3.2.3 Instance Normalization

All batch normalization [17] layers are replaced
with instance normalization [7] layers to improve
generalization ability and ensure that computation
is the same across training and inference. Unlike
batch normalization, instance normalization can-
not be folded with the previous convolutional or
fully-connected layers before inference, so it results
in small overhead during inference.
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3.3 Training

Adadelta [18] with gradient clipping is applied to
optimize the loss. Early stopping and epsilon decay
are also used to prevent overfitting and numerical
instability.

3.3.1 Counting loss

In addition to the classification loss, a counting loss
[8] is added as a kind of weak supervision.

3.3.2 Relaxed loss

At the final stage of training, we modified the cross
entropy classification loss so that it pay less atten-
tion to minor recognition errors of bond angle, so
that the model can focus on something more im-
portant.

3.4 Inference

The beam search algorithm is used for decoding.
The beam width is set to 4. Model ensembling and
formal grammar parsing are also employed during
beam search to boost accuracy and avoid illegal
output.

3.4.1 Model ensembling

Model ensembling is implemented by simply av-
eraging the predictions of different models during
beam search. Those models are trained on the same
dataset independently with different initialization.

3.4.2 Grammar constraint

We have designed a LL(1) context free grammar
[9] and enforce the conformance of the outputs.
The grammar prevented common errors like mis-
matched braces from being generated. During the
decoding process, a candidate is discarded if it can
not be a prefix of a valid output. It is important for
the consumers of recognition results because they
may not be robust to malformed input.

4 Experiment
In this section, some design decisions are justified.

We split the training data into train set, validation
set, and test set. The validation set containing 1000

Table 1: The effect of resolution

Resolution EM Structure EM
1024 x 256 66.30% 76.10%
512 x 512 61.80% 73.20%

Table 2: The effect of kernel size

Normalization EM Structure EM
3x3 65.80% 76.00%
5x5 66.30% 76.10%

samples is used for early stopping and the test set
containing 1000 samples is used for evaluation.

4.1 Resolution

Table 1 shows that the input resolution of model
is quite important. Although 1024 x 256 = 512 x
512 and therefore the inference time is similar, the
model consuming images of 1024 x 256 performed
much better. We believe that the reason is that
for most of the images in the dataset, the width
is higher than the height, so more details are lost
when they are resized to 512 x 512.

4.2 Kernel size

Table 2 shows that using a larger convolutional ker-
nel resulted in a higher accuracy.

4.3 Normalization

Table 3 shows that both instance normalization
(IN) and layer normalization (LN) [19] outper-
formed batch normalization (BN).

Table 3: The effect of normalization

Normalization EM Structure EM
BN 61.50% 72.30%
LN 64.20% 74.10%
IN 66.30% 76.10%




Table 4: The effect of classification loss

EM Structure EM
66.30% 76.10%
68.40% 79.70%

Loss function
Standard
Relaxed

Table 5: The effect of model ensembling

Model count EM  Structure EM
1 66.30% 76.10%
2 70.50% 80.70%
3 71.00% 81.70%
4 72.30% 82.50%

4.4 Classification loss

Table 4 shows that trained model benefited from
the relaxed classification loss function.

4.5 Model ensembling

Table 5 shows that the use of model ensembling is
a reliable way to boost the accuracy, if inference
time is not a concern.

4.6 Comparison with state of the art

Table 6 shows that the proposed solution is highly
competitive among the participants of ICDAR 2024
CROCS. Although it is not as good as the one by
CNKI AT at the end of the competition, the gap
is small (less than one percent point). Meanwhile,
it outperformed the third place finisher by a large
margin (over 8 percent points for EM). It should be
noted that the total number of parameters is only
about 4 x 1.3 millions, which is quite small com-
pared with other recent models for chemical struc-
ture recognition.

5 Conclusion

With a set of standard tricks, competitive accuracy
for handwritten chemical structure recognition can
be achieved, even if the number of total parame-
ters is much lower than most of the modern neural
network based systems reported in the literature.

Table 6: Comparison with other teams

Team EM Structure EM
CNKI AI 70.66% 80.12%
Sunia 70.05% 79.44%
imucs 62.03% 72.72%
shenweiping  56.76% 67.56%
TSNUK 50.11% 67.16%
cuong.nt2 19.60% 29.29%
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